Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Catheter Cardiovasc Interv ; 103(6): 972-981, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606477

RESUMEN

BACKGROUND: Ethylene diamine tetra-acetic acid (EDTA) is a chelating agent used to dissolve calcium deposits but evidence in decalcifying atherosclerotic lesions is limited. AIMS: We assessed the feasibility and efficacy of EDTA delivered via porous balloon to target calcified lesions in cadaveric below-the-knee (BTK) arteries. METHODS: Using porcine carotid arteries, EDTA concentration was measured in the arterial wall and outside the artery at the 0-, 0.5-, 4-, and 24-h circulation after the injection through a porous balloon. In cadaver BTK samples, the proximal and distal anterior tibial artery (ATA) and distal posterior tibial artery (PTA) were studied. EDTA-2Na/H2O or EDTA-3Na/H2O were administrated using a porous balloon, then circulated for 6 h for EDTA-3Na/H2O and 24 h for EDTA-2Na/H2O and EDTA-3Na/H2O. Micro-CT imaging of the artery segments before and after the circulation and cross-sectional analyses were performed to evaluate calcium burden. RESULTS: In the porcine carotid study, EDTA was delivered through a porous balloon present in the arterial wall and was retained there for 24 h. In BTK arteries, cross-sectional analyses of micro-CT revealed a significant decrease in the calcium area in the distal ATA segment under 24-h circulation with EDTA-2Na/H2O and in the distal ATA segment under 24-h circulation with EDTA-3Na/H2O. The proximal ATA segment under 6-h circulation with EDTA-3Na/H2O showed no significant change in any parameters of calcium CONCLUSION: EDTA-3Na/H2O or EDTA-2Na/H2O with longer circulation times resulted in greater calcium reduction in atherosclerotic lesion. EDTA may have a potential therapeutic option for the treatment of atherosclerotic calcified lesions.


Asunto(s)
Angioplastia de Balón , Ácido Edético , Estudios de Factibilidad , Calcificación Vascular , Animales , Ácido Edético/farmacología , Angioplastia de Balón/instrumentación , Porosidad , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/terapia , Cadáver , Arterias Tibiales/diagnóstico por imagen , Quelantes del Calcio/farmacología , Factores de Tiempo , Microtomografía por Rayos X , Humanos , Dispositivos de Acceso Vascular , Diseño de Equipo , Sus scrofa , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/metabolismo , Placa Aterosclerótica , Porcinos
2.
Am J Physiol Cell Physiol ; 326(2): C589-C605, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189132

RESUMEN

The pathophysiology of muscle damage in peripheral artery disease (PAD) includes increased oxidant production and impaired antioxidant defenses. Epicatechin (EPI), a naturally occurring flavanol, has antioxidant properties that may mediate the beneficial effects of natural products such as cocoa. In a phase II randomized trial, a cocoa-flavanol-rich beverage significantly improved walking performance compared with a placebo in people with PAD. In the present work, the molecular mechanisms underlying the therapeutic effect of cocoa flavanols were investigated by analyzing baseline and follow-up muscle biopsies from participants. Increases in nuclear factor erythroid 2-related factor 2 (Nrf2) target antioxidants heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the cocoa group were significantly associated with reduced accumulation of central nuclei, a myopathy indicator, in type II muscle fibers (P = 0.017 and P = 0.023, respectively). Protein levels of the mitochondrial respiratory complex III subunit, cytochrome b-c1 complex subunit 2 (UQCRC2), were significantly higher in the cocoa group than in the placebo group (P = 0.032), and increases in UQCRC2 were significantly associated with increased levels of Nrf2 target antioxidants HO-1 and NQO1 (P = 0.001 and P = 0.035, respectively). Exposure of non-PAD human myotubes to ex vivo serum from patients with PAD reduced Nrf2 phosphorylation, an indicator of activation, increased hydrogen peroxide production and oxidative stress, and reduced mitochondrial respiration. Treatment of myotubes with EPI in the presence of serum from patients with PAD increased Nrf2 phosphorylation and protected against PAD serum-induced oxidative stress and mitochondrial dysfunction. Overall, these findings suggest that cocoa flavanols may enhance antioxidant capacity in PAD via Nrf2 activation.NEW & NOTEWORTHY The current study supports the hypothesis that in people with PAD, cocoa flavanols activate Nrf2, thereby increasing antioxidant protein levels, protecting against skeletal muscle damage, and increasing mitochondrial protein abundance. These results suggest that Nrf2 activation may be an important therapeutic target for improving walking performance in people with PAD.


Asunto(s)
Cacao , Catequina , Enfermedad Arterial Periférica , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Cacao/química , Catequina/metabolismo , Catequina/farmacología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Músculos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Enfermedad Arterial Periférica/tratamiento farmacológico , Enfermedad Arterial Periférica/metabolismo , Polifenoles/metabolismo , Polifenoles/farmacología
3.
Free Radic Biol Med ; 213: 138-149, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218551

RESUMEN

Functional cell treatment for critical limb ischemia is limited by cell viability loss and dysfunction resulting from a harmful ischemic microenvironment. Metal-polyphenol networks have emerged as novel cell delivery vehicles for protecting cells from the detrimental ischemic microenvironment and prolonging the survival rate of cells in the ischemic microenvironment. M2 macrophages are closely related to tissue repair, and they secrete anti-inflammatory factors that contribute to lesion repair. However, these cells are easily metabolized in the body with low efficiency. Herein, M2 macrophages were decorated with a metal‒polyphenol network that contains copper ions and epigallocatechin gallate (Cu-EGCG@M2) to increase cell survival and therapeutic potential. Cu-EGCG@M2 synergistically promoted angiogenesis through the inherent angiogenesis effect of M2 macrophages and copper ions. We found that Cu-EGCG@M2 increased in vitro viability and strengthened the in vivo therapeutic effect on the ischemic hindlimbs of mice, which promoted the recovery of blood and muscle regeneration, resulting in superior limb salvage. These therapeutic effects were ascribed to the increased survival rate and therapeutic period of M2 macrophages, as well as the ameliorated microenvironment at the ischemic site. Additionally, Cu-EGCG exhibited antioxidant, anti-inflammatory, and proangiogenic effects. Our findings provide a feasible option for cell-based treatment of CLI.


Asunto(s)
Cobre , Enfermedad Arterial Periférica , Ratones , Animales , Cobre/metabolismo , Polifenoles/farmacología , Polifenoles/metabolismo , Macrófagos/metabolismo , Isquemia/metabolismo , Enfermedad Arterial Periférica/tratamiento farmacológico , Enfermedad Arterial Periférica/metabolismo , Antiinflamatorios/farmacología , Iones/metabolismo
4.
J Magn Reson Imaging ; 59(1): 192-200, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224304

RESUMEN

BACKGROUND: A noninvasive and reliable approach to quantitatively measure muscle perfusion of lower extremity is needed to aid the diagnosis and treatment of peripheral artery disease (PAD). PURPOSE: To verify the reproductivity of using blood oxygen level-dependent (BOLD) imaging to evaluate perfusion in lower extremities, and explore its correlation with walking performance in patients with PAD. STUDY TYPE: Prospective observational study. SUBJECTS: Seventeen patients with lower extremity PAD (mean age: 67 ± 6 years, 15 males) and eight older adults (controls). FIELD STRENGTH/SEQUENCE: Dynamic multi-echo gradient echo T2* weighted imaging at 3T. ASSESSMENT: Perfusion was analyzed in regions of interest according to muscle groups. Perfusion parameters were measured, such as minimum ischemia value (MIV), time to peak (TTP), and gradient during reactive hyperemia (Grad) by two independent users. Walking performance experiments including short physical performance battery (SPPB) and 6-minute walk were tested in patients. STATISTICAL TESTS: BOLD parameters were compared using Mann-Whitney U test and Kruskal-Wallis test. Relations between parameters and walking performance were assessed by Mann-Whitney U test and Spearman's correlation coefficient. RESULTS: Good to perfect agreement was demonstrated for all perfusion parameters of interuser reproducibility, and the interscan reproducibility of MIV, TTP, and Grad was good. The TTP of the patients was longer than that of the controls (87.85 ± 38.85 s vs. 36.54 ± 7.27 s), while the Grad of patients was smaller (0.16 ± 0.12 msec/s vs. 0.24 ± 0.11 msec/s). Among PAD patients, the MIV was significantly lower in the low SPPB subgroup (score 6-8) than in the high SPPB group (score 9-12), and the TTP was negatively correlated with 6-minute walk distance (ρ = -0.549). DATA CONCLUSION: BOLD imaging method had overall good reproducibility for the perfusion assessment of calf muscles. The perfusion parameters were different between PAD patients and controls, and were correlated with lower extremity function. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Saturación de Oxígeno , Enfermedad Arterial Periférica , Anciano , Humanos , Masculino , Persona de Mediana Edad , Isquemia , Extremidad Inferior/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Músculo Esquelético , Oxígeno/metabolismo , Enfermedad Arterial Periférica/metabolismo , Reproducibilidad de los Resultados , Caminata , Femenino
5.
Am J Physiol Heart Circ Physiol ; 326(1): H44-H60, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921663

RESUMEN

Chronic kidney disease (CKD) is a strong risk factor for peripheral artery disease (PAD) that is associated with worsened clinical outcomes. CKD leads to the accumulation of tryptophan metabolites that are associated with adverse limb events in PAD and are ligands of the aryl hydrocarbon receptor (AHR), which may regulate ischemic angiogenesis. To test if endothelial cell-specific deletion of the AHR (AHRecKO) alters ischemic angiogenesis and limb function in mice with CKD subjected to femoral artery ligation. Male AHRecKO mice with CKD displayed better limb perfusion recovery and enhanced ischemic angiogenesis compared with wild-type mice with CKD. However, the improved limb perfusion did not result in better muscle performance. In contrast to male mice, deletion of the AHR in female mice with CKD had no impact on perfusion recovery or angiogenesis. With the use of primary endothelial cells from male and female mice, treatment with indoxyl sulfate uncovered sex-dependent differences in AHR activating potential and RNA sequencing revealed wide-ranging sex differences in angiogenic signaling pathways. Endothelium-specific deletion of the AHR improved ischemic angiogenesis in male, but not female, mice with CKD. There are sex-dependent differences in Ahr activating potential within endothelial cells that are independent of sex hormones.NEW & NOTEWORTHY This study provides novel insights into the mechanisms by which chronic kidney disease worsens ischemic limb outcomes in an experimental model of peripheral artery disease. Deletion of the aryl hydrocarbon receptor (AHR) in the endothelium improved ischemic angiogenesis suggesting that AHR inhibition could be a viable therapeutic target; however, this effect was only observed in male mice. Subsequent analysis in primary endothelial cells reveals sex differences in Ahr activating potential independent of sex hormones.


Asunto(s)
Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Masculino , Femenino , Ratones , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Células Endoteliales/metabolismo , Isquemia , Enfermedad Arterial Periférica/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Hormonas Esteroides Gonadales
6.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38069074

RESUMEN

Critical limb ischemia incidence and prevalence have increased over the years. However, there are no successful treatments to improve quality of life and to reduce the risk of cardiovascular and limb events in these patients. Advanced regenerative therapies have focused their interest on the generation of new blood vessels to repair tissue damage through the use of stem cells. One of the most promising sources of stem cells with high potential in cell-based therapy is adipose-derived stem cells (ASCs). ASCs are adult mesenchymal stem cells that are relatively abundant and ubiquitous and are characterized by a multilineage capacity and low immunogenicity. The proangiogenic benefits of ASCs may be ascribed to: (a) paracrine secretion of proangiogenic molecules that may stimulate angiogenesis; (b) secretion of microvesicles/exosomes that are also considered as a novel therapeutic prospect for treating ischemic diseases; and (c) their differentiation capability toward endothelial cells (ECs). Although we know the proangiogenic effects of ASCs, the therapeutic efficacy of ASCs after transplantation in peripheral artery diseases patients is still relatively low. In this review, we evidence the potential therapeutic use of ASCs in ischemic regenerative medicine. We also highlight the main challenges in the differentiation of these cells into functional ECs. However, significant efforts are still needed to ascertain relevant transcription factors, intracellular signaling and interlinking pathways in endothelial differentiation.


Asunto(s)
Tejido Adiposo , Enfermedad Arterial Periférica , Adulto , Humanos , Tejido Adiposo/metabolismo , Células Endoteliales/metabolismo , Calidad de Vida , Isquemia/terapia , Isquemia/metabolismo , Células Madre/metabolismo , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/metabolismo , Diferenciación Celular , Neovascularización Fisiológica
7.
Circ Res ; 133(10): 791-809, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823262

RESUMEN

BACKGROUND: Lower extremity peripheral artery disease (PAD) is a growing epidemic with limited effective treatment options. Here, we provide a single-nuclei atlas of PAD limb muscle to facilitate a better understanding of the composition of cells and transcriptional differences that comprise the diseased limb muscle. METHODS: We obtained gastrocnemius muscle specimens from 20 patients with PAD and 12 non-PAD controls. Nuclei were isolated and single-nuclei RNA-sequencing was performed. The composition of nuclei was characterized by iterative clustering via principal component analysis, differential expression analysis, and the use of known marker genes. Bioinformatics analysis was performed to determine differences in gene expression between PAD and non-PAD nuclei, as well as subsequent analysis of intercellular signaling networks. Additional histological analyses of muscle specimens accompany the single-nuclei RNA-sequencing atlas. RESULTS: Single-nuclei RNA-sequencing analysis indicated a fiber type shift with patients with PAD having fewer type I (slow/oxidative) and more type II (fast/glycolytic) myonuclei compared with non-PAD, which was confirmed using immunostaining of muscle specimens. Myonuclei from PAD displayed global upregulation of genes involved in stress response, autophagy, hypoxia, and atrophy. Subclustering of myonuclei also identified populations that were unique to PAD muscle characterized by metabolic dysregulation. PAD muscles also displayed unique transcriptional profiles and increased diversity of transcriptomes in muscle stem cells, regenerating myonuclei, and fibro-adipogenic progenitor cells. Analysis of intercellular communication networks revealed fibro-adipogenic progenitors as a major signaling hub in PAD muscle, as well as deficiencies in angiogenic and bone morphogenetic protein signaling which may contribute to poor limb function in PAD. CONCLUSIONS: This reference single-nuclei RNA-sequencing atlas provides a comprehensive analysis of the cell composition, transcriptional signature, and intercellular communication pathways that are altered in the PAD condition.


Asunto(s)
Músculo Esquelético , Enfermedad Arterial Periférica , Humanos , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/metabolismo , Extremidad Inferior , ARN/metabolismo
8.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569543

RESUMEN

Tissular hypoxia stimulates vascular morphogenesis. Vascular morphogenesis shapes the cell and, consecutively, tissue growth. The development of new blood vessels is intermediated substantially through the tyrosine kinase pathway. There are several types of receptors inferred to be located in the blood vessel structures. Vascular endothelial growth factor A (VEGF-A) is the leading protagonist of angiogenesis. VEGF-A's interactions with its receptors VEGFR1, VEGFR2, and VEGFR3, together with disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), connective tissue growth factor (CTGF), and neuropilin-1 (NRP1), independently, are studied computationally. Peripheral artery disease (PAD), which results in tissue ischemia, is more prevalent in the senior population. Presently, medical curatives used to treat cases of PAD-antiplatelet and antithrombotic agents, statins, antihypertensive remedies with ACE (angiotensin-converting enzyme) impediments, angiotensin receptor blockers (ARB) or ß- blockers, blood glucose control, and smoking cessation-are not effective. These curatives were largely established from the treatment of complaint cases of coronary disease. However, these medical curatives do not ameliorate lower limb perfusion in cases of PAD. Likewise, surgical or endovascular procedures may be ineffective in relieving symptoms. Eventually, after successful large vessel revascularization, the residual microvascular circulation may well limit the effectiveness of curatives in cases of PAD. It would thus feel rational to attempt to ameliorate perfusion in PAD by enhancing vascular rejuvenescence and function. Likewise, stimulating specific angiogenesis in these cases (PAD) can ameliorate the patient's symptomatology. Also, the quality of life of PAD patients can be improved by developing new vasodilative and angiogenetic molecules that stimulate the tyrosine kinase pathway. In this respect, the VEGFA angiogenetic pathway was explored computationally. Docking methodologies, molecular dynamics, and computational molecular design methodologies were used. VEGFA's interaction with its target was primarily studied. Common motifs in the vascular morphogenesis pathway are suggested using conformational energy and Riemann spaces. The results show that interaction with VEGFR2 and ADAMTS1 is pivotal in the angiogenetic process. Also, the informational content of two VEGFA complexes, VEGFR2 and ADAMTS1, is crucial in the angiogenesis process.


Asunto(s)
Enfermedad Arterial Periférica , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antagonistas de Receptores de Angiotensina , Calidad de Vida , Inhibidores de la Enzima Convertidora de Angiotensina , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Morfogénesis/genética , Enfermedad Arterial Periférica/metabolismo
9.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373529

RESUMEN

Saphenous vein bypass grafting is an effective technique used to treat peripheral arterial disease (PAD). However, restenosis is the major clinical challenge for the graft vessel among people with PAD postoperation. We hypothesize that there is a common culprit behind arterial occlusion and graft restenosis. To investigate this hypothesis, we found TGF-ß, a gene specifically upregulated in PAD arteries, by bioinformatics analysis. TGF-ß has a wide range of biological activities and plays an important role in vascular remodeling. We discuss the molecular pathway of TGF-ß and elucidate its mechanism in vascular remodeling and intimal hyperplasia, including EMT, extracellular matrix deposition, and fibrosis, which are the important pathways contributing to stenosis. Additionally, we present a case report of a patient with graft restenosis linked to the TGF-ß pathway. Finally, we discuss the potential applications of targeting the TGF-ß pathway in the clinic to improve the long-term patency of vein grafts.


Asunto(s)
Enfermedad Arterial Periférica , Túnica Íntima , Humanos , Túnica Íntima/metabolismo , Vena Safena/metabolismo , Remodelación Vascular , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Enfermedad Arterial Periférica/cirugía , Enfermedad Arterial Periférica/metabolismo
10.
Circ Res ; 133(2): 158-176, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37325935

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS: AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS: PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS: These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Isquemia/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Receptores de Hidrocarburo de Aril/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 43(6): 836-851, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37128915

RESUMEN

Peripheral artery disease (PAD) is a vascular disorder caused by occlusive atherosclerosis, which commonly impairs blood flow to the lower extremities. The prevalence of PAD is increasing globally with >200 million people affected. PAD remains a growing global health problem as the population continues to age and diabetes incidence grows. Many patients with PAD, most notably those with critical limb ischemia, fail attempts at surgical and percutaneous intervention to improve blood flow and are at risk of amputation. Gene therapy provides an opportunity to change the clinical course of PAD in these patients via strategies that increase vascular supply through angiogenesis and arteriogenesis improving muscle perfusion and function in ischemic legs. This article discusses gene therapy approaches in the context of PAD, both intermittent claudication and critical limb ischemia, and the promise of adeno-associated virus-based strategies delivering not just VEGFs (vascular endothelial growth factors) but a range of other mediators as potential new therapeutics. We also highlight challenges and failures in the clinical translation of gene therapy for PAD and how at least some of these obstacles may be overcome using adeno-associated virus.


Asunto(s)
Dependovirus , Enfermedad Arterial Periférica , Humanos , Dependovirus/genética , Isquemia Crónica que Amenaza las Extremidades , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/metabolismo , Claudicación Intermitente/terapia , Extremidad Inferior , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo
12.
Transl Res ; 260: 17-31, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37220835

RESUMEN

Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Humanos , Ratones , Animales , Lactante , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedad Arterial Periférica/metabolismo , Obesidad/metabolismo , Isquemia/etiología , Isquemia/metabolismo , Dieta , Inflamación/patología , Fibrosis , Miembro Posterior/irrigación sanguínea
13.
J Am Heart Assoc ; 12(7): e027986, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36974760

RESUMEN

Background In endothelial cells (ECs), glycolysis, regulated by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, isoform-3), is the major metabolic pathway for ATP generation. In preclinical peripheral artery disease models, VEGF165a (vascular endothelial growth factor165a) and microRNA-93 both promote angiogenesis. Methods and Results Mice following hind-limb ischemia (HLI) and ECs with, and without, hypoxia and serum starvation were examined with, and without, microRNA-93 and VEGF165a. Post-HLI perfusion recovery was monitored. EC metabolism was studied using seahorse assay, and the expression and activity of major metabolism genes were assessed. Reactive oxygen species levels and EC permeability were evaluated. C57Bl/6J mice generated a robust angiogenic response to HLI, with ECs from ischemic versus nonischemic muscle demonstrating no increase in glycolysis. Balb/CJ mice generated a poor angiogenic response post-HLI; ischemic versus nonischemic ECs demonstrated significant increase in glycolysis. MicroRNA-93-treated Balb/CJ mice post-HLI showed better perfusion recovery, with ischemic versus nonischemic ECs showing no increase in glycolysis. VEGF165a-treated Balb/CJ mice post-HLI showed no improvement in perfusion recovery with ischemic versus nonischemic ECs showing significant increase in glycolysis. ECs under hypoxia and serum starvation upregulated PFKFB3. In ECs under hypoxia and serum starvation, VEGF165a versus control significantly upregulated PFKFB3 and glycolysis, whereas miR-93 versus control demonstrated no increase in PFKFB3 or glycolysis. MicroRNA-93 versus VEGF165a upregulated glucose-6-phosphate dehydrogenase expression and activity, activating the pentose phosphate pathway. MicroRNA-93 versus control increased reduced nicotinamide adenine dinucleotide phosphate and virtually eliminated the increase in reactive oxygen species. In ECs under hypoxia and serum starvation, VEGF165a significantly increased and miR-93 decreased EC permeability. Conclusions In peripheral artery disease, activation of the pentose phosphate pathway to promote angiogenesis may offer potential therapeutic advantages.


Asunto(s)
MicroARNs , Enfermedad Arterial Periférica , Ratones , Animales , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Arterial Periférica/metabolismo , Hipoxia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glucólisis/fisiología , Isquemia/genética
14.
FEBS J ; 290(19): 4596-4613, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35942640

RESUMEN

Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Humanos , Enfermedad Arterial Periférica/tratamiento farmacológico , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Respiración de la Célula
15.
Cardiovasc Pathol ; 63: 107510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36460259

RESUMEN

Atherogenesis involves a complex multifactorial process including chronic inflammation that requires the participation of several cell types and molecules. In addition to their role in vascular homeostasis, extracellular vesicles also appear to play an important role in atherogenesis, including monocyte transmigration and foam cell formation, SMC proliferation and migration, leukocyte transmigration, and thrombosis. Peripheral arterial disease, a major form of peripheral vascular disease, is characterized by structural or functional impairment of peripheral arterial supply, often secondary to atherosclerosis. Elevated levels of extracellular vesicles have been demonstrated in patients with peripheral arterial disease and implicated in the development of atherosclerosis within peripheral vascular beds. However, extracellular vesicles also appear capable of delivering cargo with atheroprotective effects. This capability has been exploited in vesicles engineered to carry content capable of neovascularization, suggesting potential for therapeutic angiogenesis. This dual capacity holds substantial promise for diagnosis and therapy, including possibly limb- and life-saving options for peripheral arterial disease management.


Asunto(s)
Aterosclerosis , Vesículas Extracelulares , Enfermedad Arterial Periférica , Humanos , Aterosclerosis/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Células Espumosas/metabolismo , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/metabolismo , Arterias/patología
16.
Arterioscler Thromb Vasc Biol ; 43(1): e46-e61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384268

RESUMEN

BACKGROUND: Diabetes is a major risk factor for peripheral arterial disease. Clinical and preclinical studies suggest an impaired collateral remodeling and angiogenesis in response to atherosclerotic arterial occlusion in diabetic conditions, although the underlying mechanisms are poorly understood. OBJECTIVE: To clarify the cellular and molecular mechanisms underlying impaired postischemic adaptive vascular responses and to evaluate rHDL (reconstituted HDL)-ApoA-I nanotherapy to rescue the defect in type 2 diabetic mouse model of hindlimb ischemia. METHODS AND RESULTS: Hindlimb ischemia was induced by unilateral femoral artery ligation. Collateral and capillary parameters together with blood flow recovery were analyzed from normoxic adductor and ischemic gastrocnemius muscles, respectively, at day 3 and 7 post-ligation. In response to femoral artery ligation, collateral lumen area was significantly reduced in normoxic adductor muscles. Distally, ischemic gastrocnemius muscles displayed impaired perfusion recovery and angiogenesis paralleled with persistent inflammation. Muscle-specific mRNA sequencing revealed differential expression of genes critical for smooth muscle proliferation and sprouting angiogenesis in normoxic adductor and ischemic gastrocnemius, respectively, at day 7 post-ligation. Genes typical for macrophage (Mϕ) subsets were differentially expressed across both muscle types. Cell-specific gene expression, flow cytometry, and immunohistochemistry revealed persistent IFN-I response gene upregulation in arterial endothelial cells, ECs and Mϕs from T2DM mice associated with impaired collateral remodeling, angiogenesis and perfusion recovery. Furthermore, rHDL nanotherapy rescued impaired collateral remodeling and angiogenesis through dampening EC and Mϕ inflammation in T2DM mice. CONCLUSIONS: Our results suggest that an impaired collateral remodeling and sprouting angiogenesis in T2DM mice is associated with persistent IFN-I response in ECs and Mϕs. Dampening persistent inflammation and skewing ECs and Mϕ phenotype toward less inflammatory ones using rHDL nanotherapy may serve as a potential therapeutic target for T2DM peripheral arterial disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedad Arterial Periférica , Ratones , Animales , Neovascularización Fisiológica , Células Endoteliales/metabolismo , Apolipoproteína A-I/metabolismo , Macrófagos/metabolismo , Isquemia , Músculo Esquelético/irrigación sanguínea , Arteria Femoral/metabolismo , Diabetes Mellitus Tipo 2/genética , Inflamación/metabolismo , Enfermedad Arterial Periférica/metabolismo , Fenotipo , Miembro Posterior/irrigación sanguínea , Ratones Endogámicos C57BL , Circulación Colateral
17.
J Am Heart Assoc ; 11(21): e023085, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36300658

RESUMEN

Background Peripheral artery disease (PAD) is associated with gastrocnemius muscle abnormalities. However, the biological pathways associated with gastrocnemius muscle dysfunction and their associations with progression of PAD are largely unknown. This study characterized differential gene and microRNA (miRNA) expression in gastrocnemius biopsies from people without PAD compared with those with PAD. Participants with PAD included those with and without PAD progression. Methods and Results mRNA and miRNA sequencing were performed to identify differentially expressed genes, differentially expressed miRNAs, mRNA-miRNA interactions, and associated biological pathways for 3 sets of comparisons: (1) PAD progression (n=7) versus non-PAD (n=7); (2) PAD no progression (n=6) versus non-PAD; and (3) PAD progression versus PAD no progression. Immunohistochemistry was performed to determine gastrocnemius muscle fiber types and muscle fiber size. Differentially expressed genes and differentially expressed miRNAs were more abundant in the comparison of PAD progression versus non-PAD compared with PAD with versus without progression. Among the top significant cellular pathways in subjects with PAD progression were muscle contraction or development, transforming growth factor-beta, growth/differentiation factor, and activin signaling, inflammation, cellular senescence, and notch signaling. Subjects with PAD progression had increased frequency of smaller Type 2a gastrocnemius muscle fibers in exploratory analyses. Conclusions Humans with PAD progression exhibited greater differences in the number of gene and miRNA expression, biological pathways, and Type 2a muscle fiber size compared with those without PAD. Fewer differences were observed between people with PAD without progression and control patients without PAD. Further study is needed to confirm whether the identified transcripts may serve as potential biomarkers for diagnosis and progression of PAD.


Asunto(s)
MicroARNs , Enfermedad Arterial Periférica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , ARN Mensajero/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R616-R627, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094447

RESUMEN

Muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses are exaggerated during exercise in peripheral artery diseases (PAD). However, the precise signaling pathways and molecular mediators responsible for these abnormal autonomic responses in PAD are poorly understood. Our previous study suggests that A-type voltage-gated K+ (KV4) channels regulate the excitability in muscle dorsal root ganglion (DRG) neurons of PAD rats; however, it is still lacking regarding the effects of PAD on characteristics of KV4 currents and engagement of bradykinin (BK) subtype receptors. Thus, we examined KV4 currents in two distinct muscle DRG neurons, namely isolectin B4-positive and B4-negative (IB4+ and IB4-) DRG neurons. IB4+ neurons express receptors for glial cell line-derived neurotrophic factor (GDNF), whereas IB4- DRG neurons are depending on nerve growth factors for survival. Our data showed that current density in muscle DRG neurons of PAD rats was decreased and this particularly appeared in IB4+ DRG neurons as compared with IB4- DRG neurons. We also showed that stimulation of BK B1 and B2 receptors led to a greater inhibitory effect on KV4 currents in IB4+ muscle DRG neurons and siRNA knockdown of KV4 subunit KV4.3 decreased the activity of KV4 currents in IB4+ DRG neurons. In conclusion, our data suggest that limb ischemia and/or ischemia-induced BK inhibit activity of KV4 channels in a subpopulation of the thin fiber muscle afferent neurons depending on GDNF, which is likely a part of signaling pathways involved in the exaggerated blood pressure response during activation of muscle afferent nerves in PAD.


Asunto(s)
Ganglios Espinales , Enfermedad Arterial Periférica , Ratas , Animales , Ganglios Espinales/metabolismo , Bradiquinina/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Lectinas/metabolismo , Lectinas/farmacología , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Neuronas/metabolismo , Músculos , Enfermedad Arterial Periférica/metabolismo
19.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142618

RESUMEN

Peripheral artery disease (PAD) is characterized by impaired blood flow to the lower extremities, resulting in ischemic limb injuries. Individuals with diabetes and PAD typically have more severe ischemic limb injuries and limb amputations, but the mechanisms involved are poorly understood. Previously, we identified BAG3 as a gene within a mouse genetic locus termed limb salvage QTL1 on mouse chromosome 7 that determined the extent of limb necrosis following ischemic injury in C57Bl/6 mice. Whether BAG3 deficiency plays a role in the severe ischemic injury observed in diabetic PAD is not known. In vitro, we found simulated ischemia enhanced BAG3 expression in primary human skeletal muscle cells, whereas BAG3 knockdown increased necroptosis markers and decreased cell viability. In vivo, ischemic skeletal muscles from hind limbs of high-fat diet (HFD)-fed mice showed poor BAG3 expression compared to normal chow diet (NCD)-fed mice, and this was associated with increased limb amputations. BAG3 overexpression in ischemic skeletal muscles from hind limbs of HFD mice rescued limb amputation and improved autophagy, necroptosis, skeletal muscle function and regeneration. Therefore, BAG3 deficiency in ischemic skeletal muscles contributes to the severity of ischemic limb injury in diabetic PAD, likely through autophagy and necroptosis pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Diabetes Mellitus , Angiopatías Diabéticas , Neuropatías Diabéticas , Enfermedad Arterial Periférica , Animales , Proteínas Reguladoras de la Apoptosis/genética , Diabetes Mellitus/metabolismo , Angiopatías Diabéticas/metabolismo , Neuropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Necroptosis , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo
20.
Cells ; 11(17)2022 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36078086

RESUMEN

Nitric oxide (NO) is the critical regulator of VEGFR2-induced angiogenesis. Neither VEGF-A over-expression nor L-Arginine (NO-precursor) supplementation has been effective in helping patients with Peripheral Artery Disease (PAD) in clinical trials. One incompletely studied reason may be due to the presence of the less characterized anti-angiogenic VEGF-A (VEGF165b) isoform. We have recently shown that VEGF165b inhibits ischemic angiogenesis by blocking VEGFR1, not VEGFR2 activation. Here we wanted to determine whether VEGF165b inhibition using a monoclonal isoform-specific antibody against VEGF165b vs. control, improved perfusion recovery in preclinical PAD models that have impaired VEGFR2-NO signaling, including (1) type-2 diabetic model, (2) endothelial Nitric oxide synthase-knock out mice, and (3) Myoglobin transgenic mice that have impaired NO bioavailability. In all PAD models, VEGF165b inhibition vs. control enhanced perfusion recovery, increased microvascular density in the ischemic limb, and activated VEGFR1-STAT3 signaling. In vitro, VEGF165b inhibition vs. control enhanced a VEGFR1-dependent endothelial survival/proliferation and angiogenic capacity. These data demonstrate that VEGF165b inhibition induces VEGFR1-STAT3 activation, which does not require increased NO to induce therapeutic angiogenesis in PAD. These results may have implications for advancing therapies for patients with PAD where the VEGFR2-eNOS-NO pathway is impaired.


Asunto(s)
Enfermedad Arterial Periférica , Factor A de Crecimiento Endotelial Vascular , Animales , Isquemia/tratamiento farmacológico , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico , Enfermedad Arterial Periférica/tratamiento farmacológico , Enfermedad Arterial Periférica/metabolismo , Isoformas de Proteínas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...